On nilpotent Moufang loops with central associators
نویسندگان
چکیده
منابع مشابه
On Moufang A-loops
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...
متن کاملBuchsteiner Loops: Associators and Constructions
Let Q be a Buchsteiner loop. We describe the associator calculus in three variables, and show that |Q| ≥ 32 if Q is not conjugacy closed. We also show that |Q| ≥ 64 if there exists x ∈ Q such that x is not in the nucleus of Q. Furthermore, we describe a general construction that yields all proper Buchsteiner loops of order 32. Finally, we produce a Buchsteiner loop of order 128 that is nilpoten...
متن کاملMoufang Loops with Commuting Inner Mappings
We investigate the relation between the structure of a Moufang loop and its inner mapping group. Moufang loops of odd order with commuting inner mappings have nilpotency class at most two. 6-divisible Moufang loops with commuting inner mappings have nilpotency class at most two. There is a Moufang loop of order 2 with commuting inner mappings and of nilpotency class three.
متن کاملMoufang Loops of Small Order
The main result of this paper is the determination of all nonassociative Moufang loops of orders *31. Combinatorial type methods are used to consider a number of cases which lead to the discovery of 13 loops of the type in question and prove that there can be no others. All of the loops found are isomorphic to all of their loop isotopes, are solvable, and satisfy both Lagrange's theorem and Syl...
متن کاملPseudo-automorphisms and Moufang Loops
An extensive study of Moufang loops is given in [2].1 One defect of that study is that it assumes Moufang's associativity theorem [6], the only published proof of which involves a complicated induction. Using pseudo-automorphisms along with recent methods of Kleinfeld and the author [S], we shall give simple noninductive proofs of three associativity theorems, one of which (Theorem 5.1) general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2007
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.01.031